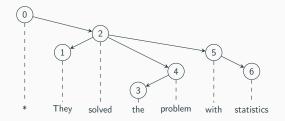
Dependency Parsing with Bounded Block Degree and Well-nestedness via Lagrangian Relaxation and Branch-and-Bound

Caio Corro, Joseph Le Roux, Mathieu Lacroix, Antoine Rozenknop and Roberto Wolfler-Calvo

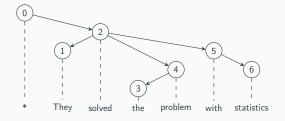

August 7-12

Université Paris 13 - LIPN

This work is supported by a public grant overseen by the French National Research Agency (ANR) as part of the Investissements d'Avenir program (ANR-10-LABX-0083).

Dependency trees

- Association of each word of sentence with a vertex
- Dependency tree: spanning tree rooted at 0

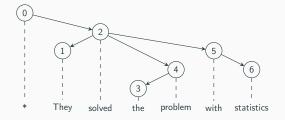

Dependency parsing

- Set of valid dependency trees for sentence x: Y_x
- Arc factored model: $score(y) = \sum_{a \in Y} score(a)$
- Dependency parsing: $\hat{y}_x = \arg \max_{y \in Y_x} score(y)$

1.Introduction 2/2

Dependency trees

- Association of each word of sentence with a vertex
- Dependency tree: spanning tree rooted at 0


Structural properties [Bodirsky et al. 2009; Kuhlmann 2010]

Non-projective ← Projective

1.Introduction 2 / 2:

Dependency trees

- Association of each word of sentence with a vertex
- Dependency tree: spanning tree rooted at 0

Structural properties [Bodirsky et al. 2009; Kuhlmann 2010]

1.Introduction 2 / 2

	English (PTB/LTH)		German	(SPMRL)	Dutch (UD)		
	WN	₩N	WN	₩N	WN	₩N	
BD 1	92.26		67.60		69.13		
BD 2	7.58	0.12	27.12	0.79	28.50	0.08	
BD 3	0.12	0.01	3.86	0.30	2.24	0.01	
BD 4	0.00	0.00	0.19	< 0.01	0.04	0.00	
BD > 4	0.00	0.00	0.11	< 0.01	0.00	0.00	
	Spanish (UD)		Portuguese (UD)				
	WN	₩N	WN	₩N			
BD 1	93.95		81.56				
BD 2	5.99	0.04	13.92	0.05			
BD 3	0.02	0.00	3.76	0.02			
BD 4	0.00	0.00	0.54	0.00			
BD > 4	0.00	0.00	0.14	0.00			

1.Introduction 3 / 2

	English (PTB/LTH)		German	(SPMRL)	Dutch (UD)	
	WN	₩N	WN	₩N	WN	₩N
BD 1	92.26		67.60		69.13	
BD 2	7.58	0.12	27.12	0.79	28.50	0.08
BD 3	0.12	0.01	3.86	0.30	2.24	0.01
BD 4	0.00	0.00	0.19	< 0.01	0.04	0.00
BD > 4	0.00	0.00	0.11	< 0.01	0.00	0.00
	Spanish (UD)		Portuguese (UD)			
	WN	WN	WN	₩N		
BD 1	93.95		81.56			
BD 2	5.99	0.04	13.92	0.05		
BD 3	0.02	0.00	3.76	0.02		
BD 4	0.00	0.00	0.54	0.00		
BD > 4	0.00	0.00	0.14	0.00		

• Blue: Projective dependency trees

1.Introduction 3 / 2

	English (PTB/LTH)		German	(SPMRL)	Dutch (UD)	
	WN	₩N	WN	₩N	WN	₩N
BD 1	92.26		67.60		69.13	
BD 2	7.58	0.12	27.12	0.79	28.50	0.08
BD 3	0.12	0.01	3.86	0.30	2.24	0.01
BD 4	0.00	0.00	0.19	< 0.01	0.04	0.00
BD > 4	0.00	0.00	0.11	< 0.01	0.00	0.00
	Spanish (UD)		Portuguese (UD)			
	WN	WN	WN	₩N		
BD 1	93.95		81.56			
BD 2	5.99	0.04	13.92	0.05		
BD 3	0.02	0.00	3.76	0.02		
BD 4	0.00	0.00	0.54	0.00		
BD > 4	0.00	0.00	0.14	0.00		

• Blue: Projective dependency trees

• Blue + Purple: $\approx 99\%$ of the dependency trees

1.Introduction 3 / :

	English (PTB/LTH)		German	(SPMRL)	L) Dutch (UD	
	WN	₩N	WN	₩N	WN	₩N
BD 1	92.26		67.60		69.13	
BD 2	7.58	0.12	27.12	0.79	28.50	0.08
BD 3	0.12	0.01	3.86	0.30	2.24	0.01
BD 4	0.00	0.00	0.19	< 0.01	0.04	0.00
BD > 4	0.00	0.00	0.11	< 0.01	0.00	0.00
	Spanisl	n (UD)	Portugu	ese (UD)		
	Spani sl WN	n (UD) WN	Portugu WN	ese (UD)		
BD 1	•	,		` ,		
BD 1 BD 2	WN	,	WN	` ,		
	WN 93.95	WN	WN 81.56	WN		
BD 2	WN 93.95 5.99	0.04	WN 81.56 13.92	0.05		

- Blue: Projective dependency trees
- Blue + Purple: $\approx 99\%$ of the dependency trees
- Blue + Purple + Red: Non-projective dependency trees

1.Introduction

Motivations

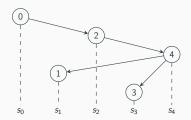
Observation

- Projective parsing: does not correctly cover datasets
- Non-projective parsing: produce invalid structures

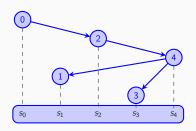
Problem

• WN and k-BBD parsing: no tractable algorithm

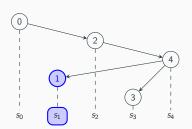
Contribution

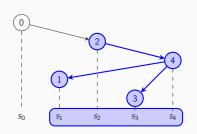

• First efficient parsing algorithm based on Lagrangian Relaxation

1.Introduction 4 / 2:

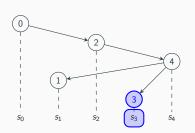

Outline

- 1.Introduction
- 2. Dependency tree characterization
- 3. Existing parsing algorithms
- 4. Novel characterization based on arc-sets
- 5. Efficient parsing with fine-grained constraints
- 6. Experiments
- 7. Conclusion


1.Introduction 5 / 2


Yield of a node v: set of all nodes reachable from v

 $\textit{Yield}(0) = \{0, 1, 2, 3, 4\}$

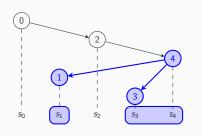

$$Yield(0) = \{0, 1, 2, 3, 4\}$$

 $Yield(1) = \{1\}$

$$Yield(0) = \{0, 1, 2, 3, 4\}$$

$$Yield(1) = \{1\}$$

$$Yield(2) = \{1, 2, 3, 4\}$$



$$Yield(0) = \{0, 1, 2, 3, 4\}$$

$$Yield(1) = \{1\}$$

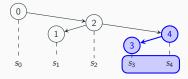
$$Yield(2) = \{1, 2, 3, 4\}$$

$$Yield(3) = \{3\}$$

$$Yield(0) = \{0, 1, 2, 3, 4\}$$

$$Yield(1) = \{1\}$$

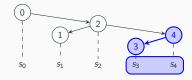
$$Yield(2) = \{1, 2, 3, 4\}$$


$$Yield(3) = \{3\}$$

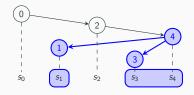
$$Yield(4) = \{3, 4\}$$

Structural properties of dependencies

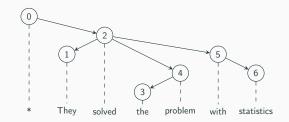
Projective dependency trees


 \Rightarrow Trees with contiguous yields only

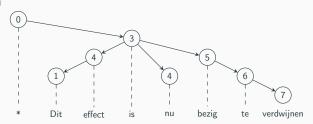
Structural properties of dependencies


Projective dependency trees

 \Rightarrow Trees with contiguous yields only

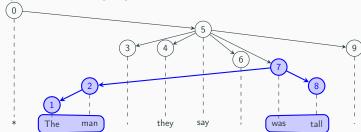

Non-projective dependency trees

⇒ Unconstrained trees

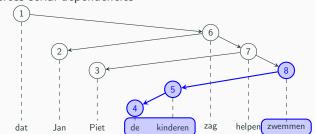


Example: Projective dependency trees

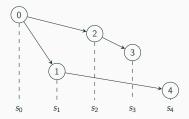
• English



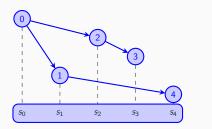
Dutch



Example: Non-projective dependency trees

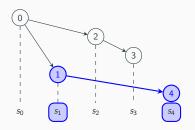

• English: surrounding argument

• Dutch: cross-serial dependencies



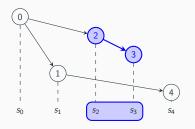
- BD of a vertex: number of contiguous intervals described by its yield
- BD of a tree: the maximal block degree of its vertices
- k-BBD tree: tree with a BD less or equal to k

Tree of block degree 2


- BD of a vertex: number of contiguous intervals described by its yield
- BD of a tree: the maximal block degree of its vertices
- k-BBD tree: tree with a BD less or equal to k

Yield(0) = [0...4] BD(0) = 1

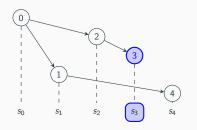
Tree of block degree 2


- BD of a vertex: number of contiguous intervals described by its yield
- BD of a tree: the maximal block degree of its vertices
- k-BBD tree: tree with a BD less or equal to k

$$Yield(0) = [0...4]$$
 $BD(0) = 1$ $Yield(1) = [1] \cup [4]$ $BD(1) = 2$

Tree of block degree 2

- BD of a vertex: number of contiguous intervals described by its yield
- BD of a tree: the maximal block degree of its vertices
- k-BBD tree: tree with a BD less or equal to k

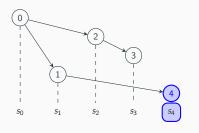

$$Yield(0) = [0...4]$$
 $BD(0) = 1$

$$\textit{Yield}(1) = [1] \cup [4] \qquad \qquad \textit{BD}(1) = 2$$

$$Yield(2) = [2...3]$$
 $BD(2) = 1$

Tree of block degree 2

- BD of a vertex: number of contiguous intervals described by its yield
- BD of a tree: the maximal block degree of its vertices
- k-BBD tree: tree with a BD less or equal to k

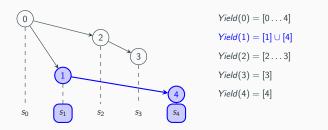


$$Yield(0) = [0...4]$$
 $BD(0) = 1$
 $Yield(1) = [1] \cup [4]$ $BD(1) = 2$
 $Yield(2) = [2...3]$ $BD(2) = 1$

Yield(3) = [3] BD(3) = 1

Tree of block degree 2

- BD of a vertex: number of contiguous intervals described by its yield
- BD of a tree: the maximal block degree of its vertices
- k-BBD tree: tree with a BD less or equal to k



$\textit{Yield}(0) = [0 \dots 4]$	BD(0) = 3
$\textit{Yield}(1) = [1] \cup [4]$	BD(1) = 2
$Yield(2) = [2 \dots 3]$	BD(2) = 3
Yield(3) = [3]	BD(3) = 3
Yield(4) = [4]	BD(4) = 3

Tree of block degree 2

k-Bounded Block Degree (k-BBD)

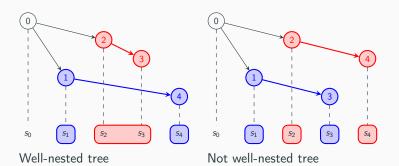
- BD of a vertex: number of contiguous intervals described by its yield
- BD of a tree: the maximal block degree of its vertices
- k-BBD tree: tree with a BD less or equal to k

Tree of block degree 2

BD(0) = 1

BD(1) = 2

BD(2) = 1


BD(3) = 1

BD(4) = 1

Structural properties (2/2): WN

Well-nestedness (WN)

- Interleaving sets I_1, I_2 : there exist $i, j \in I_1$ and $k, l \in I_2$ such that i < k < j < l
- Well-nested tree: does not contain two vertices whose yields are disjoint and interleave

Parsing algorithms

Complexity (arc-factored)

```
Non-projective O(n^2) [McDonald et al. 2005]
Projective O(n^3) [Eisner 2000]
WN + 2-BBD O(n^7) [Gómez-Rodríguez et al. 2009]
WN + k-BBD, k \ge 2 O(n^{5+2(k-1)}) [Gómez-Rodríguez et al. 2009]
```

Remark

Projective ⇔ 1-BBD and WN

Tractability

- Non-projective and projective: tractable
- WN + k-BBD: not tractable

Integer Linear Program for non-projective parsing

 $z \in R^A$: incidence vector such that $z_a = 1$ iff arc a is in the tree.

Integer Linear Program for non-projective parsing

 $z \in R^A$: incidence vector such that $z_a = 1$ iff arc a is in the tree.

$$\max_{z} \sum_{a \in A} score(a) \times z_{a}$$
 Arc-factored model (1)

s.t.
$$\sum_{\mathbf{a} \in \delta^{\mathrm{in}}(\mathbf{v})} z_{\mathbf{a}} = 1 \qquad \forall \mathbf{v} \in V^{+} \qquad \textit{One head/word} \qquad \qquad (2)$$

$$\sum_{a \in \delta^{\text{in}}(W)} z_a \ge 1 \qquad \forall W \subseteq V^+ \qquad \textit{Connectedness} \tag{3}$$

$$z \in \{0,1\}^A$$
 Integrality (4)

Integer Linear Program for non-projective parsing

 $z \in R^A$: incidence vector such that $z_a = 1$ iff arc a is in the tree.

$$\max_{z} \sum_{a \in A} score(a) \times z_{a}$$
 Arc-factored model (1)

s.t.
$$\sum_{a \in \delta^{in}(v)} z_a = 1$$
 $\forall v \in V^+$ One head/word (2)

$$\sum_{a \in \delta^{\text{in}}(W)} z_a \ge 1 \qquad \forall W \subseteq V^+ \qquad \textit{Connectedness} \tag{3}$$

$$z \in \{0,1\}^A$$
 Integrality (4)

Efficient decoding

In practice: (directed) *Maximum Spanning Tree* (MST) algorithm [Schrijver 2003; McDonald et al. 2005]

Integer Linear Program for non-projective parsing

 $z \in R^A$: incidence vector such that $z_a = 1$ iff arc a is in the tree.

$$\max_{z} \sum_{a \in A} score(a) \times z_{a}$$
 Arc-factored model (1)

s.t.
$$\sum_{a \in \delta^{\mathrm{in}}(v)} z_a = 1$$
 $\forall v \in V^+$ One head/word (2)

$$\sum_{a \in \delta^{\text{in}}(W)} z_a \ge 1 \qquad \forall W \subseteq V^+ \qquad \textit{Connectedness} \tag{3}$$

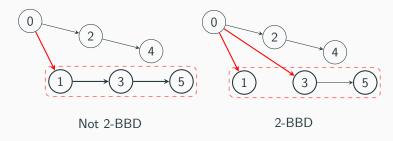
$$z \in \{0,1\}^A$$
 Integrality (4)

Problem enhancement

⇒ Integrating fine-grained structural constraints ?

k-Bounded Block Degree Constraint

Definition

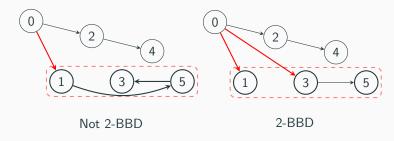

 \mathcal{W}^{k+1} : vertex subsets describing at least k+1 non-adjacent intervals

k-Bounded Block Degree Constraint

Definition

 \mathcal{W}^{k+1} : vertex subsets describing at least k+1 non-adjacent intervals

Example with k = 2 and $\{1, 3, 5\} \in \mathcal{W}^3$

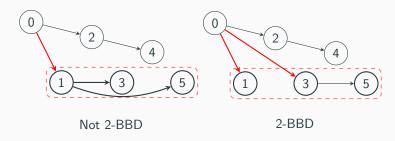

 \rightarrow : arcs adjacent to the vertex subset $\{1,3,5\}$

k-Bounded Block Degree Constraint

Definition

 \mathcal{W}^{k+1} : vertex subsets describing at least k+1 non-adjacent intervals

Example with k = 2 and $\{1, 3, 5\} \in \mathcal{W}^3$

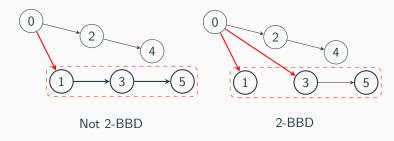

 \rightarrow : arcs adjacent to the vertex subset $\{1,3,5\}$

k-Bounded Block Degree Constraint

Definition

 \mathcal{W}^{k+1} : vertex subsets describing at least k+1 non-adjacent intervals

Example with k = 2 and $\{1, 3, 5\} \in \mathcal{W}^3$

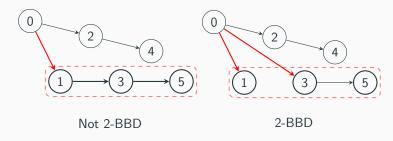

 \rightarrow : arcs adjacent to the vertex subset $\{1,3,5\}$

k-Bounded Block Degree Constraint

Definition

 \mathcal{W}^{k+1} : vertex subsets describing at least k+1 non-adjacent intervals

Example with k = 2 and $\{1, 3, 5\} \in \mathcal{W}^3$


 \rightarrow : arcs adjacent to the vertex subset $\{1,3,5\}$

k-Bounded Block Degree Constraint

Definition

 \mathcal{W}^{k+1} : vertex subsets describing at least k+1 non-adjacent intervals

Example with k = 2 and $\{1, 3, 5\} \in \mathcal{W}^3$

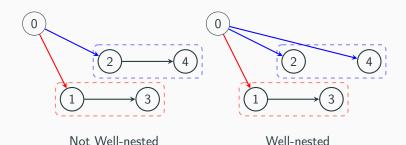
 \rightarrow : arcs adjacent to the vertex subset $\{1,3,5\}$

Constraint

For each vertex subset $W \in \mathcal{W}^{\geq k+1} \Rightarrow$ At least two adjacent arcs

Well-nestedness constraint

Definition


 \mathcal{I} : family of couples of disjoint interleaving vertex subsets

Well-nestedness constraint

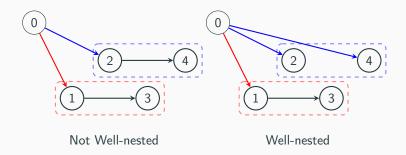
Definition

 \mathcal{I} : family of couples of disjoint interleaving vertex subsets

Example with $(\{1,3\},\{2,4\}) \in \mathcal{I}$

$$\textit{Yield}(1) = \{\textcolor{red}{1}, \textcolor{red}{3}\}$$

$$Yield(2) = \{2, 4\}$$


- $Yield(1) = \{1, 3\}$
- $Yield(2) = \{2\}$
- $Yield(4) = \{4\}$

Well-nestedness constraint

Definition

 \mathcal{I} : family of couples of disjoint interleaving vertex subsets

Example with $(\{1,3\},\{2,4\}) \in \mathcal{I}$

Constraint

For each couple $(I_1, I_2) \in \mathcal{I} \Rightarrow \text{At least two adjacent arcs for } I_1 \text{ or } I_2$

Full ILP: parsing with k-BBD and WN constraints

$$\max_{z} \sum_{a \in A} score(a) \times z_a$$
 Arc-factored (5)

s.t.
$$z \in Z$$
 Non-projective (6)

$$\sum_{\mathbf{a} \in \delta(W)} z_{\mathbf{a}} \ge 2 \qquad \forall W \in \mathcal{W}^{\ge k+1} \qquad k\text{-BBD}$$
 (7)

$$\sum_{a \in \delta(I_1)} z_a + \sum_{a \in \delta(I_2)} z_a \ge 3 \qquad \forall (I_1, I_2) \in \mathcal{I} \qquad WN$$
 (8)

Problem

- MST: k-BBD and WN constraints can not be integrated
- Generic solver: exponential number of constraints
- Polynomial algorithm: intractable [Gómez-Rodríguez et al. 2009]

Solving the ILP

 \Rightarrow Lagrangian Relaxation applied on constraints (7)-(8)

Lagrangian Relaxation

Lagrangian Dual Problem

$$\min_{u\geq 0} \max_{z\in Z} L(z,u)$$

Efficient minimization of the dual

- Min: Subgradient descent
- Max: Maximum Spanning Tree
- Many relaxed constraints: Non Delayed Relax-and-Cut

Efficient maximization of the primal

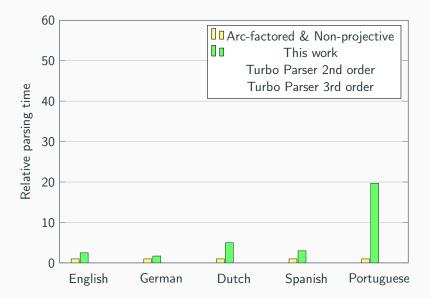
- Branch-and-Bound
- Problem reduction (exact pruning technique)

Distribution of dependency tree characteristics

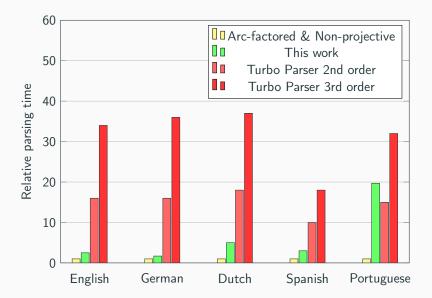
	English (PTB/LTH)		German (SPMRL)		Dutch (UD)	
	WN	₩N	WN	₩N	WN	₩N
BD 1	92.26		67.60		69.13	
BD 2	7.58	0.12	27.12	0.79	28.50	0.08
BD 3	0.12	0.01	3.86	0.30	2.24	0.01
BD 4	0.00	0.00	0.19	< 0.01	0.04	0.00
BD > 4	0.00	0.00	0.11	< 0.01	0.00	0.00
	Spanish (UD)		Portuguese (UD)			
	WN	₩N	WN	₩N		
BD 1	93.95		81.56			
BD 2	5.99	0.04	13.92	0.05		
BD 3	0.02	0.00	3.76	0.02		
BD 4	0.00	0.00	0.54	0.00		
BD > 4	0.00	0.00	0.14	0.00		

• Blue: Projective dependency trees

• Blue + Purple: $\approx 99\%$ of the dependency trees


6. Experiments

UAS (Ratio of correct arcs)


6. Experiments 19 / 21

Efficiency: Relative parsing time

6. Experiments 20 / 21

Efficiency: Relative parsing time

6. Experiments 20 / 21

Conclusion: k-BBD and WN dependency parsing

Our contribution

- Novel characterization based on arc sets only
- The first efficient and flexible algorithm:
 - k-BBD with arbitrary k
 WN optional
 Tunable for different languages/properties
- First experimental results with K-BBD and WN parsing

Surprising observation

• Does not improve UAS under an arc-factored model

Perspectives

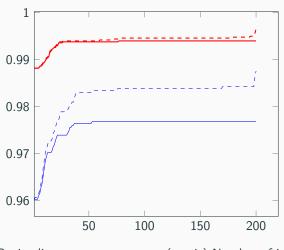
- LTAG derivation parsing (2-BBD and WN)
- Parsing lexicalized mildly context sensitive languages

7. Conclusion 21 / 2

References I

- Bodirsky, Manuel, Marco Kuhlmann, and Mathias Möhl (2009).

 "Well-nested drawings as models of syntactic structure". In: Tenth


 Conference on Formal Grammar and Ninth Meeting on Mathematics of

 Language, pp. 195–203.
 - Eisner, Jason (2000). "Bilexical grammars and their cubic-time parsing algorithms". In: *Advances in probabilistic and other parsing technologies*. Springer, pp. 29–61.
 - Gómez-Rodríguez, Carlos, David Weir, and John Carroll (2009). "Parsing mildly non-projective dependency structures". In: *Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics*. Association for Computational Linguistics, pp. 291–299.

References II

- Koo,
 - Koo, Terry et al. (2010). "Dual decomposition for parsing with non-projective head automata". In: *Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, pp. 1288–1298.
 - Kuhlmann, Marco (2010). Dependency Structures and Lexicalized Grammars: An Algebraic Approach. Vol. 6270. Springer.
 - Lemaréchal, Claude (2001). "Lagrangian relaxation". In: Computational combinatorial optimization. Springer, pp. 112–156.
 - McDonald, Ryan et al. (2005). "Non-projective dependency parsing using spanning tree algorithms". In: *Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, pp. 523–530.
 - Schrijver, A. (2003). *Combinatorial Optimization Polyhedra and Efficiency*. Springer.

Lagrangian Relaxation: Optimality Rate

(y-axis) Optimality rate(blue) English(solid) With certificate

(x-avis) Number of iterations (red) German (dashed) Without